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Drag reduction in the turbulent Kolmogorov flow
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We investigate the phenomenon of drag reduction in a viscoelastic fluid model of dilute polymer solutions.
By means of direct numerical simulations of the three-dimensional turbulent Kolmogorov flow we show that
drag reduction takes place above a critical Reynolds numbgerReexplicit expression for the dependence of
Re. on polymer elasticity and diffusivity is derived. The values of the drag coefficient obtained for different
fluid parameters collapse onto a universal curve when plotted as a function of the rescaled Reynolds number
Re/Reg. The analysis of the momentum budget allows us to gain some insight on the physics of drag reduction,
and suggests the existence of a Re-independent value of the drag cofficient—lower than the Newtonian
one—for large Reynolds numbers.
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I. INTRODUCTION Kolmogorov flow as well. Furthermore, we observe striking

When a viscous fluid is kept in motion by some externalduantitative simila_rities_with experimental_ results in waII-_
driving, a mean flow is established: the ratio between thdounded flows: this points to the conclusion that the basic
work made by the force and the kinetic energy carried by théhysical mechanisms of drag reduction be substantially inde-
mean flow is called thelrag coefficientor friction factor. ~ pendent of the detailed structure of the flow.

This dimensionless number measures the power that has to
be supplied to the fluid to maintain a given throughput.
When the flow is laminar, the drag coefficient is inversely Il. VISCOELASTIC KOLMOGOROV FLOW

proportional to the Reynolds number. Upon increasing the To describe the dynamics of a dilute polymer solution we

intensity of the applied force the flow eventually becomesadopt the linear viscoelastic mod@Idroyd-B) [11]
turbulent, and the drag coefficient becomes approximately

independent of the Reynolds numbéd, therefore substan-
tially larger than in the viscous case.

In 1949 the British chemist Toms reported that the turbu-
lent drag could be reduced by up to 80% through the addition
of minute amountgfew tenths of p.p.m. in weightof long- do+Uu-V)e=(Vu)'-o+0o-(Vu) -2
chain soluble polymers to water. This observation triggered
an enormous experimental activity to characterize this phe- 2

The velocity fieldu is incompressible, the symmetric matrix

nomenon(see, e.g., Ref$2-6]). In spite of these efforts, no
fully satisfactory theory of drag reduction is available yet. o is the conformation tensor of polymer molecules, and its

However, a recent breakthrough has been the observation PEce tror is a measure of their elongation. The parametsr

drag reduction in numerical simulations of the turbulent T ) )
channel flow of viscoelastic fluids’]. Most of the features the (slowes polymer relaxation time. The matrix of velocity
: gradients is defined a&u);=du; and1 is the unit tensor.

of experimental flows of dilute polymer solutions are suc- h lvent vi ity is denoted dnis th ~sh
cessfully reproduced by these models, even at the quantit;_- € solventviscosity 1S denote by and 7 is ne zero-shear
tive level [8]. Despite these advances, the understanding Oiontnbunon of polymers to the total solution viscosity
drag reduction in the experimentally relevant geometry of vo(1+7). _The parar‘_‘e‘e?’ IS proportl_onal to the polymer
pipe or channel flow is still hindered by the complexity of concentration. Thg_(_j|ffu3|ve termAo is added to prevent
these flows already at the Newtonian level, i.e., in the ab_numerlcal mstabllmgs [.12]' The constant fprqng F
sence of polymer$9]. This consideration motivated us to :_[F cogz/L),0,0] maintains the system in a statistically sta-
investigate simpler geometries in the hope that this may sheliPnary state characterized by a mean flaw. Due to the
some light on the basic physical mechanisms of drag reducgymmetries ofF, the only nonzero component of the mean
tion (see, e.g., Ref10]). velocity is {uy): it depends on the shear coordinatalone,

In this paper we present the results of an extensive nuvanishes atz=+(w/2)L, and is even under reflections
merical investigation of the viscoelastic turbulent Kolmog-2z— -z Its value atz=0, {U,),=o, Will be denoted byJ. Fi-
orov flow. This system has several analogies with the turbunally, we establish a short glossary between the Kolmogorov
lent channel flow, while its main distinctive trait is the flow and the channel flowf plays the role of the pressure
absence of material boundaries. Notwithstanding this majogradient, 7L is analogous to the channel height, dddis
difference we will show that drag reduction takes place in theequivalent to the centerline velocity.

Yo

2
Gu+(u-V)u=—Vp+Au+ V.ot+tF, (1)

o-1

+ kAo
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FIG. 1. (Color onling Mean velocity profiles for a Newtonian 100 200 300 400 500
(»=0) and a viscoelastic simulatiofyy=0.3,EI=0.019 at given Re = ULiv

forcing amplitudeF=1.5. The measured profiles are undistinguish-

able from(u,)=U cogz/L) (full lines) in both cases. The effect of _ : .
elasticity is to increase the peak valuewith respect to the New- coelastic fluid parameters. Data have been collected from numerical

tonian case: in the present case this corresponds to a reduction g{nulatlons at different f_or(_:lng ampl_ltudé‘s and ws_coe_lastlc pa-
the drag coefficient, defined in E(8), of about 40%. In the inset, ram.etersn, 7, k. The statistical erfor' in the determination foand
the profiles of the Reynolds stres,u,)=Ssin(z/L) and the mean € IS Of the order of the symbols’ size.
polymer stress 2yn7 X ay,)=-T sin(z/L). In this case the Reynolds
stress is reduced upon polymer addition to approximately 70% of it€hange in the profilésee, e.g., Ref3])—in the Kolmogorov
Newtonian value, consistently with experimental results at compaflow the increase in throughput takes place just by means of
rable drag reductiof14]. The “missing” turbulent shear stress is an overall rescaling of the mean velocity. This is due to the
compensated by the contribution of the polymer stress: the sun of different boundary conditions: in channel flows, the profile in
andT is equal toF in both the Newtonian and viscoelastic case. the viscous sublayer is left unchanged upon polymer addition
while the bulk flow increases substantially. This requires a
Ill. NUMERICAL EXPERIMENTS reshaping of the mean profile, that takes actually place
, ) _through the increase of the extent of the buffer redisee,
In this framework, we have performed a series of numeri o "Ref.[13]). In the Kolmogorov flow there is no con-

cal integrations of Eqs(1) and (2) for a set of values of = gaint on velocity profiles, and drag reduction does not nec-
forcing intensityF, at fixed v, both for the Newtonian and essarily entail their structural change.

the viscoelastic case. Comparing results at a giteis To quantify the effect of viscoelasticity on the mean flow,
equivalent to keeping an imposed pressure gradient—:

) X ‘We have defined the drag coefficient as
therefore a fixed wall-shear stress—in channel flow experi-
ments(see, e.g., Ref(13]). Equations(1) and (2) are inte-
grated in a periodic cube of sider2by means of a fully FL
dealiazed pseudospectral code with® @bllocation points. f= u?’
The mean flow length scale Is=1 and the viscosity i/
=0.015625. Starting from an initial configuration with a
small amount of energy on the smallest modes, after thand measured its dependence on the Reynolds number Re
system evolved into a statistically stationary state, time av=UL/v. It is natural to use the Reynolds number based on
erages over 100-1000 eddy-turnover times have been pesgolution viscosity: indeed, for the non-shear-thinning fluid
formed to obtain the mean profiles of several relevant obdescribed by Eqs(1) and (2), v coincides with the(kine-
servables. The latter include the average velogity, the  matic wall viscosity (see, e.g., Refd.7,8]). It is also pos-
turbulent shear streg®eynolds stressu,u,), and the mean sible to define the equivalent of the fl’iCtiOﬂy Reynolds number
polymer stress 2,77 Xa,). Re,, often used in experiments: here, ReFL3/12. In the

Newtonian case Re:Re.
For Re<\2 the flow is laminar with mean velocity
IV. RESULTS AND DISCUSSION =FL?/v, giving a drag coefficienf=Re’. At Re=50 the
system is already in a fully developed turbulent state. For a
The mean flow is accurately described by the sinusoidaNewtonian fluid, numerical data show that the drag coeffi-
profile {uy=U cogz/L), both in the Newtoniansee Ref. cient is approximately independent of Reee Fig. 2 This
[15]) and in the viscoelastic flow. However, as shown in Fig.behavior agrees with the following classical Kolmogorov ar-
1, in the viscoelastic case the centerline velotitys defi- gument: since the average energy ingetFU/2 scales as
nitely larger: this is the hallmark of drag reduction. It has toe=(8/2)U3/L in fully developed turbulence, E¢3) yields a
be remarked that—at variance with wall-bounded flowsconstant drag coefficient=8. The Newtonian momentum
where drag reduction is always accompanied by a structurdudget givesF,=d{u,u,) (the viscous contribution being

FIG. 2. (Color online The drag coefficient for different vis-
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FIG. 4. (Color onling The drag coefficient plotted as a function
of the rescaled Reynolds number Re{R&ymbols as in Fig. 2. The
full line is Eq. (5) with 8=0.15,y=0.2, and§=0.02.

lations of the channel flow as welsee, e.g., Ref.7]), and
produced a similar effect on the threshold for drag reduction.
From the inspection of Fig. 2 we notice some systematic
trend: at moderate Reynolds numbéRe= 200) viscoelastic
effects do not alter substantially the value of the drag coef-
ficient; at larger Re polymers with a higher elasticity are
more effective as drag-reducing agents; conversely, polymers
with higher diffusivity are less effective. To understand the
variation of the drag coefficient with fluid parameters, we
sought a dependence of the forfre¢o(Re/Rg) where
Re.(El,Sc,7) is the critical Reynolds number for the onset
of drag reduction. To obtain an explicit expression for, Re
(b) we need to extend the argument given by Ré&B] to the
case of finite polymer diffusivity. The reasoning goes as fol-
FIG. 3. Snapshots of the isosurfacggx,y,z)=U for a New-  lows: for polymers to be substantially elongated, stretching
tonian (left) and a viscoelastic simulatiofright, EI=0.019, Sc  must prevail over elastic relaxation and diffusivity. This ar-
=0.016,7=0.5. The Reynolds number is Re350. The arrows gument is just a revised version of the Lumleys969
show the direction of the mean flow. Small-scale turbulent fluctua+time criterion.” Accordingly, at the onset, the terms appear-
tions, responsible for kinetic energy dissipation, are suppressed iifhg in Eq.(2) must then satisfyVu).~2/7+«/L?; since the
the viscoelastic case. A high-speed streak in the form of a streantransition is incipient we can estimate the typical velocity
wise oriented tube is visible in the viscoelastic casght). gradient ade,/ V)1/2' and utilizing the expressiog, o UE/L
we finally obtain

negligible and therefore a Reynolds streséuu,)

=Ssin(z/L) with S=BU? For the turbulent Kolmogorov

flow, 8=0.15. R o (2 N 1)2/3 “
When polymers are addddmay be reduced with respect & '

to its Newtonian value, depending on the polymer elasticity

El=»7/L?, the Schmidt number Sa# k, and the concentra-

tion #, as shown in Fig. 2. For the highest Reynolds numbefFor vanishing diffusivity we recover the result by REE6].

we can attain in our simulations the friction factor is reduced In Fig. 4 we present the same data as in Fig. 2, now

by 75%. Drag reduction is accompanied by changes in th@lotted against the rescaled Reynolds number Rg/Ree

velocity field similar to those occurring in channel flow ex- good quality of the collapse supports the validity of the re-

periments and simulations: the level of transverse fluctuakation f=¢(Re/Re). The functiong is universal with respect

tions (u?) is reduced while longitudinal fluctuationgu,  to the choice of fluid parameters. Its shape will be derived in

—(uy)?) increase and high streamwise velocity streaks aréhe following, with the aid of simple assumptions, starting

observedsee Fig. 3 Incidentally, we notice that drag reduc- from the equation for momentum conservatisee Ref[17]

tion is observed at Reynolds numbers definitely smaller thafor @ similar approach to wall-bounded flows ,

the typical experimental values: this is possible thanks to the Upon time averaging, Eq1) reduces toF=-vod;(uy

relatively high value of elasticity utilized in our simulations. + (U, —2vg1K0y,)/ 7). Utilizing the numerical observa-

Comparable parameters have been used in numerical simtion that the Reynolds stres$=(u,u,=Ssin(z/L) and the
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B F % T T F=9UZ/L+68U?/L, and the resulting drag coefficient is
*4 Reynolds stress
T 075 +*+ 4 1
& ¥+,
o+ B for Re< Re,,
05 | ’ T f={ (Re)\?2 (5)
y * * - y(_ec) +¢6 for Re=Re..
[T ¥ % Kk Re
= 025 ¥ % ** _
9'% ¥ * Polymer stress
0 Mﬂf 2 3 This expression is compared with numerical results in Fig. 4,
(a) Re /Re, where the values of the parametersand 6§ have been ob-
1 ] tained from the data shown in Fig. 5. The agreement is ex-
cellent, except possibly for ReRe,, where Eq.(5) predicts
_____________ #*"I . e an abrupt transition: from Fig. 5 this rather appears to be a
10t #.4* _ 107} ; i smooth crossover, whose actual shape cannot be extracted by
oup 7 o means of simple arguments. The actual valueg,of, andd
> = ; are not of utmost importance since they are likely to depend
102} i 102} . on the details of the driving force, and therefore on the shape
% of the velocity profile. What is crucial to drag reduction is
that §< B, or—in plain words—that momentum is trans-
10*; P . . 10":)5 *’:“ s . ferred with greater ease to velocity fluctuations than to elas-
® Re/Re © Re/Re tic ones. Understanding the reasons for this difference would
(] c

disclose the basic physical mechanisms of drag reduction.
FIG. 5. (Color onling (a): Peak values of the Reynolds stress ~Remarkably, Eq(5) suggests the existence of a minimal

(uu,)=Ssin(z/L), and of the polymer stress 72,7 Xo.,)=  Value for the drag coefficient in the limit of large Re. In this
-T sin(z/L), nondimensionalized by the total streBk. The sum  ultimate regime momentum transfer would take place only
(S+T)/(FL) nearly equals unity for each couple of data points, through polymer stresses. However, the present data do not
confirming that the viscoutsolveny stresswoU/L? is negligible at  cover a sufficient span of values of Re to allow us to confirm
the present Reynolds'numb.e(rls) The Reynolds streéSanld'(c) the o reject this prediction.
_polymzer stres§ non_dlmensmnallzzed by the squa_red critical vczaloc- We end up by addressing the issue of the role of polymer
Ey Ue: Thf full I'ne.s are 5’%_:7 (left 2hor_|zonta), S/U concentration in the determination of the critical Reynolds
=A(Re/Re)” (left, obliqus, T/U;=d(Re/Re)” (right). The nu- number. The results shown in Fig. 4 do show a very weak
merical parameters ag=0.15,y=0.2, and5=0.02. ) . 5

dependence onz;, compatible with the value Re (1

+7)7?3 than can be obtained from E@4). This result is at

polymer stressT=2v,7(0y,)/ 7=-T sin(z/L), we obtain the Vvariance with experimental findings in pipe and channel
momentum budgef = »,U/L2+S/L+T/L. The contribution flows, where Rgis a clearly decreasing function of the con-
wU/L2 s relevant only in the laminar regime, and can there-centration. We argue that this discrepancy is due to the linear

fore be neglected. The dependence of the stresses on tﬁggracter of the viscoelastic model adopted here. Indeed, fol-
rescaled Reynolds number is presented in Fig. 5. Below thoWing Ref.[19], let us repeat the argument that leads to Eq.
threshold the polymer stress is vanishingly small whereas thé) now for a nonlinear elastic modes.g., FENE-Pwith a
Reynolds stress i§=BU2=FL in agreement with the ob- stresg-dependgnt relaxation timg(tr ‘_T)' whereg is an in-
servation of a Re-independent drag coefficient. Above, Re créasing function of polymer elongation and equals unity in
the polymer stress makes a significant contribution to thdN€ linear range. The time criterion in this case yields Re
momentum budget. At the largest Re we can attain, the elaszE19(tr 0)]%° (the dependence on diffusivity is omitted
tic stress reaches almost 50% of the total stress, not far frod@r sake of simplicity. At small concentrations the typical
experimental results by Refl8]. Rescaling the stresses with Polymer extension will be very large, since the feedback on
the critical velocity squared shows that above the oiset the velocity field is proportional to;. At larger concentra-
tends to a constant valugJ? [see Fig. )], and the poly- tions, smaller values of twr suffice to maintain the system in
mer stress follows the laW=6U? [Fig. 5c)]. The physical @ stationary state. In the linear phase, we have that_tr
interpretation of these observations is that above the onset 677 = for extended polymers. We expect that the typical
drag reduction an increasing fraction of the momentum in{olymer extension would be a decreasing functiomoénd
jected by the external force is sequestered by po|ymer§herefore Rg an increasing function of concentration for
which are, however, less effective in absorbing it than transhonlinear models. The numerical verification of this expec-
verse velocity fluctuationgs< B). This results in an en- tation lies beyond the scope of the present paper and will be
hancement of the mean flow with respect to the Newtoniaraddressed in the near future.

case, i.e., drag reduction. Inserting the empirical expressions To summarize, we have investigated the problem of tur-
for Sand T, the momentum budget above the onset readdulent drag reduction by polymer additives in the context of
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